Molecular pathomechanisms and cell-type-specific disease phenotypes of MELAS caused by mutant mitochondrial tRNATrp
نویسندگان
چکیده
INTRODUCTION Numerous pathogenic mutations responsible for mitochondrial diseases have been identified in mitochondrial DNA (mtDNA)-encoded tRNA genes. In most cases, however, the detailed molecular pathomechanisms and cellular pathophysiology of these mtDNA mutations -how such genetic defects determine the variation and the severity of clinical symptoms in affected individuals- remain unclear. To investigate the molecular pathomechanisms and to realize in vitro recapitulation of mitochondrial diseases, intracellular mutant mtDNA proportions must always be considered. RESULTS We found a disease-causative mutation, m.5541C>T heteroplasmy in MT-TW gene, in a patient exhibiting mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with multiple organ involvement. We identified the intrinsic molecular pathomechanisms of m.5541C>T. This mutation firstly disturbed the translation machinery of mitochondrial tRNA(Trp) and induced mitochondrial respiratory dysfunction, followed by severely injured mitochondrial homeostasis. We also demonstrated cell-type-specific disease phenotypes using patient-derived induced pluripotent stem cells (iPSCs) carrying ~100 % mutant m.5541C>T. Significant loss of terminally differentiated iPSC-derived neurons, but not their stem/progenitor cells, was detected most likely due to serious mitochondrial dysfunction triggered by m.5541C>T; in contrast, m.5541C>T did not apparently affect skeletal muscle development. CONCLUSIONS Our iPSC-based disease models would be widely available for understanding the "definite" genotype-phenotype relationship of affected tissues and organs in various mitochondrial diseases caused by heteroplasmic mtDNA mutations, as well as for further drug discovery applications.
منابع مشابه
Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease.
Point mutations in the mitochondrial (mt) tRNA(Leu(UUR)) gene are responsible for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a subgroup of mitochondrial encephalomyopathic diseases. We previously showed that mt tRNA(Leu(UUR)) with an A3243G or T3271C mutation derived from patients with MELAS are deficient in a normal taurine-containing modificatio...
متن کاملThe ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.
Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA...
متن کاملIntroducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملSkeletal muscle gene expression profiling in mitochondrial disorders.
Extremely variable clinic and genetic features characterize mitochondrial encephalomyopathy (MEM). Pathogenic mitochondrial DNA (mtDNA) defects can be divided into large-scale rearrangements and single point mutations. Clinical manifestations become evident when a threshold percentage of the total mtDNA is mutated. In some MEM, the "mutant load" in an affected tissue is directly related to the ...
متن کاملMolecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes.
Many patients with inherited mitochondrial encephalopathies have one of two pathogenic mutations of mitochondrial DNA (mtDNA): A3243G or A8344G. Individuals who harbour these mutations carry both mutant and wild-type alleles within each cell (heteroplasmy). Despite clear evidence of a direct relationship between the level of mutation and mitochondrial respiratory chain function in vitro, it has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015